k-DEPENDENCE, DISJOINT MATCHINGS, AND AN EXTENSION OF A THEOREM OF FAVARON

نویسنده

  • GREGORY J. PULEO
چکیده

A vertex set D in a graph G is k-dependent if G[D] has maximum degree at most k−1, and k-dominating if every vertex outside D has at least k neighbors in D. Favaron [2] proved that if D is a k-dependent set maximizing the quantity k |D|−|E(G[D])|, then D is k-dominating. We extend this result, showing that such sets satisfy a stronger property: given any ordering < of V (G)−D, there is a k-edge-chromatic subgraph of G in which every vertex v outside D has degree at least k− d−(v), where d−(v) is the number of earlier neighbors of v in V (G) − D. Since any vertex outside D may be taken as a minimal element of <, this implies that D is k-dominating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neighborhood conditions and edge-disjoint perfect matchings

Faudree, R.J., R.J. Gould and L.M. Lesniak, Neighborhood conditions and edge-disjoint perfect matchings, Discrete Mathematics 91 (1991) 33-43. A graph G satisfies the neighborhood condition ANC(G) 2 m if, for all pairs of vertices of G, the union of their neighborhoods has at least m vertices. For a fixed positive integer k, let G be a graph of even order n which satisfies the following conditi...

متن کامل

Abstract—alexey Pokrovskiy

Alexey Pokrovskiy Aharoni and Berger conjectured [1] that every bipartite graph which is the union of n matchings of size n + 1 contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. When the matchings have size ...

متن کامل

Global Forcing Number for Maximal Matchings under Graph Operations

Let $S= \{e_1,\,e_2‎, ‎\ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$‎. ‎The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the‎ ‎vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$‎, ‎where $d_i=1$ if $e_i\in M$ and $d_i=0$‎ ‎otherwise‎, ‎for each $i\in\{1,\ldots‎ , ‎k\}$‎. ‎We say $S$ is a global forcing set for maximal matchings of $G$‎ ‎if $...

متن کامل

Matchings in Vertex-transitive Bipartite Graphs

A theorem of A. Schrijver asserts that a d–regular bipartite graph on 2n vertices has at least ( (d− 1)d−1 dd−2 )n perfect matchings. L. Gurvits gave an extension of Schrijver’s theorem for matchings of density p. In this paper we give a stronger version of Gurvits’s theorem in the case of vertex-transitive bipartite graphs. This stronger version in particular implies that for every positive in...

متن کامل

Rainbow Matchings and Rainbow Connectedness

Aharoni and Berger conjectured that every collection of n matchings of size n+1 in a bipartite graph contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. The conjecture is known to hold when the matchings are m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014